NMDL lunch seminar

Feature Extracting Properties of sRBM

NMDL intern 재료공학부 임혁준

CONTENTS

1. Outline

- Extracting features from sRBM

2. HOG

- Feature extractor for ANN

3. Spike Counting

- Reconstruction vs Feature Extraction

4. Deep-sRBM

- Training from generated features

5. Future Work

- Connecting Neuromorphic computing and AI

1. Outline Extracting features from sRBM

structure of RBM

structure of sRBM

What is the goal of RBM?

- Input data ≈ Reconstruction
- **Extract Latent factor at hidden layer**

How is "RBM" employed in ANN?

- pretraining DBN
- **AutoEncoder**

How to extract features from sRBM? **Count Spike!**

1. Outline Extracting features from sRBM

- Math for Al
- Computer Vision
- Machine Learning
- Deep Learning
- Natural Language Processing

2. HOG Feature extractor for ANN

Feature Matters!

2. HOG

Feature extractor for ANN

Recap: 2023-S intern

Trained sRBM with better feature Feature Extractor : CNN

Feature extractor for ANN 2. HOG CNN/HOG sRBM 100 95 90 HOG IMAGE DATA Accuracy[%] HID 85 LABEL LABEL 80 75 **Again, Feature Matters!** 70 1 2 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

epoch

7

Reconstruction vs Feature Extraction

3. Spike

Counting

sRBM actually "sees" image like this!

Reconstruction vs Feature Extraction

Where, How to use the feature?

- SVM (Support Vector Machine)
- MLP (Multi-Layer Perceptron)
- new sRBM (Deep-sRBM)

3. Spike

Counting

3. Spike Counting

Reconstruction vs Feature Extraction

33/824

0	0	0	0	0	0	0	0	0	0	0	0	8	32	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	38	0	0	0	0	0	0	0	0	0	0	0	0	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	10
0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	4	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	30	0	0	0	0	0	0	0	0	0	0	40	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	19	0	0	0	0	0	0	0	0	33	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	43	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0
0	0	0	0	0	0	45	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	49	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0																

Some of them never fires...

SVM (Train 5000 / Test 1000) [%]

feature extractor data	Default	HOG	CNN (10epoch, 0.9817)
MNIST	88.7	96.2	
sRBM Feature	91.3	95.8	97.8

MLP (Train 5000 / Test 1000) [%]

feature extractor data	Default	HOG	CNN (10epoch, 0.9817)
MNIST	93.2	97	98.17
sRBM Feature	90.8	96.4	97.3

Learning from generated features

4. Deep-

sRBM

Learning from generated features

4. Deep-

sRBM

15

Learning from generated features

4. Deep-

sRBM

Neuromorphic Simulation

Neuromorphic?

Simulation?

5. Future Work

Connecting Neuromorphic computing and Al

Computing Platform

A new computing processor that mimics the human brain

Neuromorphic Processor

With AI, machine learning, and blockchain demanding greater computation, we are engaged in fundamental breakthroughs. One such advance is through the development of neuromorphic processors inspired by the human brain. The goal of this approach is to emulate the brain's dynamic learning capability and power efficiency.

At SAIT, we are actively researching near/in memory computing, asynchronous spiking neural networks, and other concepts to create a brain-like processor. Our interests include brain-inspired learning and inference algorithms, low-power mixed signal computing architectures, and new synaptic memories.

SAIT collaborates with the Business Units to develop and verify technologies using the latest logic and memory fabrication.

https://www.sait.samsung.co.kr/saithome/

Thank you