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Introduction

Application Domain:

• Accelerating the discovery of novel catalyst materials for the 

oxygen reduction reaction (ORR) which is critical in fuel cells. 

Governing Problem:

• Developing a high-performance, low-cost 

catalyst for the ORR is a critical challenge 

to overcome the limitations of platinum (Pt).
(Nørskov, J. K., et al. JPCB 108.46 (2004): 17886-17892.)

Barrier to Discovery: 

• Screening vast materials search space to find optimal catalyst.

• Density Functional Theory (DFT) are accurate, but have infeasible 

computational cost for large-scale screening.

• Fundamental trade-off: simulation accuracy & scope of the search.

• Research on Machine Learning Force Fields (MLFFs) to break this 

trade-off by providing both high accuracy & speed.
(Unke, O. T., et al. Chemical Reviews 121.16 (2021): 10142-10186.)

Conclusion & Future Work

Key Contributions:

• First KD framework to directly distill first-order interatomic relational knowledge for MLFFs.

• Novel relational-contrastive loss that captures geometry of teacher's learned PES.

• State-of-the-art performance on OC20, significantly outperforming baselines.

Future Directions:

• More sophisticated relational descriptors incorporating higher-order structural features.

• Application to high-throughput materials discovery by enabling rapid screening of

large material databases with compressed yet accurate models.
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Motivation

Problem Domain:

• Knowledge distillation for Machine Learning Force Fields (MLFFs) to 

enable efficient molecular simulations.

Existing Challenges:

• Trade-off between accuracy and computational efficiency in 

molecular dynamics simulations.

• State-of-the-art equivariant GNNs (like EquiformerV2) achieve high 

accuracy but have substantial computational cost.
(Liao, Y., et al. The Twelfth International Conference on Learning Representations (2024))

• This limits adoption in large-scale molecular dynamics, high-

throughput materials screening, and drug discovery.

Limitation of Previous Approaches:

• Simplistic atom-wise feature matching that treats atoms as 

independent entities.

• Missing the crucial physics: how atoms interact with neighbors to 

define the potential energy surface (PES).

Methods

CRACK Architecture:

Key Components:

1. Relational Vectors:

• Derived from learned atomic embeddings of bonded atom 

pairs (𝒛𝑠𝑟𝑐 − 𝒛𝑑𝑠𝑡).

• Serve as proxies for teacher's learned representation of 

interatomic potentials.

2. Contrastive Learning:

• InfoNCE loss trains student to generate relational vectors 

uniquely identifiable with teacher counterparts.

• Each teacher relational vector forms positive pair with 

corresponding student vector.

• All other student vectors in batch serve as negatives.

Advantages:

Results

O* Subset of OC20 dataset:

200K Subset of OC20 dataset:

Visualization of Embeddings for O* Subset:

Teacher n2n CRACKO(E) Scalability ApplicabilityPhysics-Informed

Method Params

Embedding Energy Force

MAE
Cosine 

Similarity

MAE ↓
(meV)

MAE ↓
 (mev/Å )

Teacher 153M - - 39.8 5.8

vanilla 22M 0.217 0.205 294.5 5.9

pretrained 22M 0.311 0.271 263.6 6.1

n2n 22M 0.078 0.839 252.9 5.8

Hessian 22M 1.062 0.073 363.5 26.1

Ours 22M 0.282 0.230 234.1 6.1

Ours (w/ n2n) 22M 0.082 0.820 231.7 5.8

Method Params

Embedding Energy Force

MAE
Cosine 

Similarity

MAE ↓
(meV)

MAE ↓
 (mev/Å )

Teacher 153M - - 171.5 12.4

vanilla 22M 0.309 0.233 474.9 51.8

pretrained 22M 0.181 0.460 410.8 37.6

n2n 22M 0.096 0.816 412.8 34.8

Hessian 22M 0.351 0.180 419.3 48.6

Ours 22M 0.190 0.424 373.8 35.8

Ours (w/ n2n) 22M 0.097 0.811 371.1 34.1
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