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Abstract

State-of-the-art equivariant Graph Neural Networks (GNNs) have significantly
advanced molecular simulation by approaching quantum mechanical accuracy in
predicting energies and forces. However, their substantial computational cost limits
adoption in large-scale molecular dynamics simulations. Knowledge distillation
(KD) offers a promising solution, but existing methods for Machine Learning
Force Fields (MLFFs) often resort to simplistic atom-wise feature matching or
complex second-order information distillation, overlooking fundamental first-order
relational knowledge: how the teacher represents the potential energy surface
(PES) through learned interatomic interactions. This paper introduces CRACK,
Contrastive Relational-Aware Compression of Knowledge, a novel KD framework
that directly distills interatomic relational knowledge by modeling each interaction
as a relational vector derived from bonded atom embeddings. CRACK employs
contrastive learning to train students to generate relational vectors uniquely identi-
fiable with teacher counterparts, effectively teaching the geometry of the teacher’s
learned PES. On the challenging OC20 benchmark, CRACK enables a compact
22M-parameter student model to achieve superior energy and force prediction ac-
curacy, significantly outperforming strong distillation baselines and demonstrating
more effective transfer of physical knowledge.

1 Introduction

Graph Neural Networks (GNNs) have emerged as a dominant paradigm for machine learning on
graph-structured data, demonstrating exceptional performance in a multitude of applications such as
chemical reaction prediction, disease classification, recommendation systems, and social network
analysis [Zhou et al., 2020, Gilmer et al., 2017, Yang et al., 2023, Lim et al., 2025]. Their fundamental
strength lies in their ability to iteratively aggregate information from node neighborhoods, thereby
capturing the topological structure and feature information inherent in graphs [Wu et al., 2020, Corso
et al., 2024].

Among the most impactful applications of GNNs is in computational chemistry and materials science,
where the advent of Machine Learning Force Fields (MLFFs) has marked a paradigm shift in
computational science. MLFFs enable the acceleration of discovery by providing tools that can
approximate the accuracy of expensive quantum mechanical methods like Density Functional Theory
(DFT) at a fraction of the computational cost [Behler and Parrinello, 2007, Schütt et al., 2017, Unke
et al., 2021]. Flagship equivariant Graph Neural Networks (GNNs), such as EquiformerV2 [Liao
et al., 2023], exemplify this progress, achieving state-of-the-art accuracy in predicting molecular
energies and interatomic forces.
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Figure 1: Overall Architecture of CRACK.

Despite their success, a central conflict persists: the trade-off between accuracy and computational
efficiency. The high fidelity of models like EquiformerV2 is often coupled with substantial computa-
tional demands, stemming from large parameter counts and complex operations such as higher-degree
tensor products essential for capturing detailed geometric information. This computational bottleneck
restricts their routine application in critical research areas that necessitate simulations of large systems
or over extended timescales, including high-throughput materials screening, the study of complex
biomolecular dynamics, and various stages of drug discovery [Unke et al., 2021].

Knowledge Distillation (KD) emerges as a key enabling technology to address this accuracy-efficiency
dilemma [Hinton et al., 2015, Gou et al., 2021]. The core principle of KD involves transferring the
knowledge from a large, accurate teacher MLFF to a smaller, computationally cheaper student MLFF,
with the goal of preserving the teacher’s predictive performance in the compressed model.

However, the standard KD paradigm, often involving the minimization of Mean Squared Error (MSE)
between teacher and student atom-wise hidden representations, can be fundamentally misaligned
with the underlying physics when applied to MLFFs. Such an approach treats atoms as independent
data points, neglecting the fact that the crucial physical quantities—potential energy and interatomic
forces—arise from the relative arrangements and interactions of atoms. The objective of an MLFF is
not merely to replicate atomic feature vectors in isolation, but to accurately model the potential energy
surface (PES) that these atoms collectively define through their interactions. The PES is inherently
shaped by interatomic potentials, and while atomic embeddings encode environmental information,
matching them directly does not guarantee that the nuanced representation of interactions, which
dictates energy changes upon atomic displacement (i.e., forces), is faithfully transferred.

This paper advances the thesis, ‘To effectively distill an MLFF, one must distill the learned physics
of interatomic potentials’. Instead of asking ‘What are the features of this atom?’, we must ask the
more fundamental question: ‘How does this atom interact with its neighbors?’.

CRACK, Contrastive Relational-Aware Compression of Knowledge, is introduced as the first KD
framework designed to directly and explicitly address this question for MLFFs. CRACK is built upon
two conceptual pillars:

1. Relational Vectors: These are derived from the learned atomic embeddings (e.g., zsrc−zdst)
and serve as proxies for the teacher’s learned representation of the potential along a specific
interatomic interaction.

2. Contrastive Objective: An InfoNCE-style loss [Oord et al., 2018] is employed to train
the student. This objective requires the student to produce relational vectors that are
discriminatively similar to the teacher’s corresponding relational vectors, effectively teaching
the student the geometry of these interactions. This moves beyond simple regression of vector
components to a more nuanced task of identifying and distinguishing specific interaction
signatures learned by the teacher.
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The contributions of this work are summarized as follows:

• A novel, physics-informed knowledge distillation framework (CRACK) for MLFFs that, for
the first time, directly distills first-order interatomic relational knowledge.

• The formulation of a relational-contrastive loss function that explicitly aims to capture the
geometry of the teacher model’s learned potential energy surface, as manifested in pairwise
atomic interactions.

• Comprehensive empirical validation on the large-scale and challenging OC20
dataset [Chanussot et al., 2021], demonstrating CRACK’s state-of-the-art performance
in compressing a powerful equivariant GNN (EquiformerV2) into a significantly smaller
student model.

2 Related Work

Knowledge distillation has become an increasingly explored avenue for compressing and enhancing
GNNs. This section reviews prior work relevant to distilling knowledge in molecular GNNs and
MLFFs, contextualizing the novel contributions of CRACK.

2.1 Knowledge Distillation for Molecular GNNs

The application of knowledge distillation to molecular GNNs has shown promise for accelerating
these computationally intensive models. Ekström Kelvinius et al. [2023] established foundational
evidence that KD is a viable strategy for improving the accuracy of student models in predicting
molecular energies and forces. Their work focused on distilling hidden representations in directional
and equivariant GNNs for regression tasks, demonstrating the general applicability of KD in this
domain and providing empirical validation for the approach.

2.2 Feature-Based Distillation (Node-to-Node)

The most prevalent approach for KD in molecular GNNs is feature-based distillation, as explored by
Ekström Kelvinius et al. [2023]. This method typically involves minimizing a regression loss, e.g.,
L1 or L2 norm, between the atom-wise embeddings or hidden states produced by the student and
teacher models (referred to as n2n in this work). While computationally simple and often effective
as a baseline, this approach is fundamentally limited from a physics perspective. As discussed in
the Introduction, it treats atomic representations as independent entities, largely overlooking the
relational nature of physical interactions that govern energies and forces in molecular systems.

2.3 Relational Knowledge Distillation (RKD)

Moving beyond individual feature matching, Park et al. [2019] introduced the concept of distilling
relationships rather than isolated features in their seminal work on Relational Knowledge Distillation
(RKD). Traditional RKD methods compute relations between all pairs of samples within a batch or all
pairs of features within an instance. While innovative in principle, directly applying this framework to
molecular graphs presents significant challenges. When "samples" are atoms, this approach can lead
to physically meaningless comparisons, such as between arbitrary, non-bonded atoms across different
molecules in a batch, and scales quadratically with the number of entities, making it computationally
prohibitive for large molecular systems.

CRACK builds upon the conceptual foundation of RKD but instantiates it in a physically-grounded
and graph-aware manner. In CRACK, relational vectors are defined specifically along physically
meaningful interactions, which are the bonds identified by edges in the molecular graph. This
restriction to O(E) relations, where E is the number of edges, makes CRACK both more physically
relevant—distilling representations of actual interatomic potentials—and computationally scalable
for large molecular systems.

2.4 Hessian-based Distillation

Recently, more sophisticated KD methods have emerged that target higher-order physical information.
Amin et al. [2025] proposed distilling knowledge by matching the Hessians of energy predictions
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between a teacher foundation model and a smaller student MLFF. This approach captures the
curvature of the potential energy surface (PES), which is crucial for understanding vibrational
properties and reaction dynamics. While powerful in capturing second-order physical information,
distilling Hessians involves computationally intensive second-order derivatives that may not always
be available or stable, and may not be the most direct route to capturing fundamental interaction
patterns.

CRACK differentiates itself by focusing on first-order relational information, specifically targeting
the relational structure of the embedding space that defines pairwise potentials. This approach is
arguably more direct in capturing the primary interactions that form the PES and may be more broadly
applicable when Hessian information is noisy, unavailable, or computationally prohibitive. CRACK
distills the geometry of learned pairwise potentials, representing a distinct yet equally fundamental
aspect of the teacher’s knowledge compared to PES curvature.

2.5 Contrastive Learning on Graphs

Contrastive learning has emerged as a powerful paradigm for self-supervised representation learning
on graphs, with methods like GRACE [Zhu et al., 2020] and Deep Graph Infomax (DGI) [Veličković
et al., 2018] achieving notable success. These methods typically generate positive pairs through data
augmentations such as two augmented views of the same node or graph and learn representations by
contrasting positive pairs against negative pairs such as other nodes/graphs in the batch.

CRACK adopts a contrastive learning framework but operates within a fundamentally different
paradigm: supervised distillation rather than self-supervised learning. Unlike conventional self-
supervised contrastive methods that rely on data augmentation, CRACK leverages the teacher model
as an explicit supervisory signal with two key distinctions:

• Direct teacher-student correspondence: Positive pairs are not generated through data
augmentation but are explicitly defined by the correspondence between teacher and student
representations of the same interatomic interaction. For each interaction k, the teacher’s
relational vector rT,k forms a positive pair with the student’s corresponding relational vector
rS,k.

• Physics-informed supervision: This approach provides a stronger, more direct, and physi-
cally meaningful supervisory signal compared to augmentation-based methods. Rather than
learning general invariance to augmentations, the student is explicitly guided to learn specific
teacher-defined relational patterns that encode the physics of interatomic interactions.

This unique combination of relational distillation principles with a supervised contrastive objective,
specifically tailored for the physics of MLFFs, enables CRACK to occupy a distinct methodological
niche in the knowledge distillation landscape. Unlike generic RKD approaches that may include
physically meaningless relations or self-supervised contrastive methods that rely on data augmentation,
CRACK is designed to directly and selectively transfer the teacher’s learned representation of specific
interatomic interactions. This targeted approach, guided by explicit teacher supervision for each
molecular interaction, facilitates more faithful and physically meaningful transfer of the teacher’s
learned potential energy surface geometry.

3 Methods

This section details the CRACK framework, beginning with preliminary definitions, followed by the
formulation of relational vectors and the contrastive distillation objective.

3.1 Preliminaries

A molecule is represented as a graph G = (V, E), where V is the set of N atoms (nodes) and E is the
set of E interatomic interactions (edges). Each atom i ∈ V is associated with initial features h(0)

i .

The teacher model, denoted fT with parameters θT , is a pre-trained, large-capacity equivariant
GNN. It outputs final node embeddings ZT = {zT,1, . . . , zT,N}, where zT,i ∈ RDT . The student
model, fS with parameters θS , is a smaller GNN. It produces node embeddings Z′

S ∈ RN×DS . A
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linear projection head P : RDS → RDT maps the student’s embeddings to the teacher’s dimension,
yielding ZS = P (Z′

S).

The primary task of an MLFF is to predict the total potential energy U and per-atom forces Fi.

3.2 CRACK: Distilling the Geometry of Interatomic Potentials

The core intuition is that the directional vector difference zT,i − zT,j for a bonded pair (i, j) serves
as a learned proxy for the interaction potential. CRACK aims to teach the student to replicate the
geometry of this relational space.

3.2.1 Formalizing Relational Vectors

For each edge ek = (i, j) ∈ E , we define teacher and student relational vectors, rT,k and rS,k. Let
zT,i and zS,i denote the embeddings of atom i in the teacher and student models, respectively.

First, the atom embeddings are L2 normalized:

ẑT,i =
zT,i

∥zT,i∥2
, ẑS,i =

zS,i
∥zS,i∥2

Next, for an edge ek = (src, dst), the raw difference vectors are computed:

xT,k = ẑT,src − ẑT,dst, xS,k = ẑS,src − ẑS,dst

Finally, these difference vectors are themselves L2 normalized to yield the relational vectors, which
focuses the loss on their direction:

rT,k =
xT,k

∥xT,k∥2
, rS,k =

xS,k

∥xS,k∥2

3.2.2 The Contrastive Objective

CRACK employs an InfoNCE-based loss [Oord et al., 2018]. For a batch of Eb interactions, the
student’s relational vector rS,k is the positive sample for the teacher’s rT,k. All other student vectors
rS,m where m ̸= k are negative samples.

The CRACK loss function is formally defined as:

LCRACK = − 1

Eb

Eb∑
k=1

log
exp(sim(rT,k, rS,k)/τ)∑Eb

m=1 exp(sim(rT,k, rS,m)/τ)

where sim(u,v) = u⊤v is the cosine similarity since vectors are normalized, and τ is a temperature
hyperparameter. This is equivalent to a cross-entropy loss over the similarity logits, where the target
for each teacher vector rT,k is its corresponding student vector rS,k.

3.3 Overall Training Objective

The student model is trained by minimizing a composite loss:

Ltotal = Ltask + λ1LCRACK + λ2LKD

where Ltask is the standard energy/force prediction loss, LKD is the optional knowledge distillation
loss, such as node-to-node feature matching loss (

∑
i ||zS,i − zT,i||22), and λ1, λ2 are balancing

hyperparameters.

4 Experiments

This section details the experimental setup, presents main results, and includes ablation studies.
Further experimental details and code are available at https://github.com/hyukjunlim/CRACK.
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4.1 Experimental Setup

Dataset: Open Catalyst 2020 (OC20) [Chanussot et al., 2021], using the O* and 200K subsets.

Models: Teacher model is 153M-parameter EquiformerV2 [Liao et al., 2023] with 20 message
passing layers. Student model is 22M-parameter EquiformerV2 with only 2 message passing layers,
same architecture as teacher but with reduced depth. Since the architectures are identical, we can
initialize the student by loading the first two message passing layers from the pretrained teacher
model (denoted as "pretrained" baseline).

Evaluation Protocol: We report Energy MAE (meV) and Force MAE (meV/Å). Optionally, we also
report the MAE and Cosine Similarity of the final layer embeddings of the student compared to the
teacher.

Baselines: Teacher models, Student trained from scratch (vanilla), Student initialized with first two
layers of teacher (pretrained), direct feature distillation (n2n) [Ekström Kelvinius et al., 2023], and
Hessian-based distillation [Amin et al., 2025].

4.2 Main Results

Analysis of O* Subset: As shown in Table 1, our CRACK method with n2n achieves the best
energy MAE (232.0 meV) and force MAE (5.8 meV/Å) among student models. This is a substantial
improvement over the strong n2n baseline, demonstrating the clear benefit of adding relational
distillation.

Table 1: Performance of CRACK on O* subset of OC20 dataset. The best results are highlighted in
bold. Second best results are underlined.

Method Params Embedding Energy Force

MAE Cosine Similarity MAE (meV) ↓ MAE (m eV/Å) ↓
Teacher∗ 153M - - 39.8 5.8
Teacher 83M - - 110.7 6.9
Teacher 31M - - 54.1 6.1

vanilla 22M 0.217 0.205 294.5 5.9
pretrained 22M 0.311 0.271 263.6 6.1

n2n 22M 0.078 0.839 252.9 5.8
Hessian 22M 1.062 0.073 363.5 26.1

Ours 22M 0.282 0.230 234.1 6.1
Ours (w/ n2n) 22M 0.082 0.820 231.7 5.8
* The teacher model used for knowledge distillation. Loaded from EquiformerV2.

Analysis of 200K Subset: This trend is confirmed on the 200K subset (Table 2). CRACK alone
achieves the best energy MAE, while the combined method excels in force MAE. This suggests
CRACK is particularly effective at capturing the global energy landscape, while n2n helps ground
local features crucial for forces.

4.3 Ablation Studies

4.3.1 Relational vs. Instance-Level Contrastive Loss

The performance of instance-level contrastive loss applied directly to atom embeddings (zS,i, zT,i)
was compared to CRACK’s relational approach. Table 3 shows the results of the experiment conducted
on the O* subset of OC20 dataset. The consistent superiority of the relational method, especially in
energy MAE, validates our central hypothesis: distilling interactions is more effective than distilling
isolated atom features.

4.3.2 Impact of Temperature τ

The temperature τ controls the difficulty of the contrastive task. A low τ increases discrimination
but risks instability, while a high τ may wash out important details. An optimal τ = 0.15 was found
empirically to balance these trade-offs.
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Table 2: Performance of CRACK on 200K subset of OC20 dataset. The best results are highlighted
in bold. Second best results are underlined.

Method Params Embedding Energy Force

MAE Cosine Similarity MAE (meV) ↓ MAE (meV/Å) ↓
Teacher∗ 153M - - 171.5 12.4
Teacher 83M - - 221.0 16.5
Teacher 31M - - 177.5 14.0

vanilla 22M 0.309 0.233 474.9 51.8
pretrained 22M 0.181 0.460 410.8 37.6

n2n 22M 0.096 0.816 412.8 34.8
Hessian 22M 0.351 0.180 419.3 48.6

Ours 22M 0.190 0.424 373.8 35.8
Ours (w/ n2n) 22M 0.097 0.811 371.1 34.1
* The teacher model used for knowledge distillation. Loaded from EquiformerV2.

Table 3: Performance of instance-level contrastive loss compared to relational-level contrastive loss.
The best results are highlighted in bold. Second best results are underlined.

Method Params Embedding Energy Force

MAE Cosine Similarity MAE (meV) ↓ MAE (meV/Å) ↓
instance-level 22M 0.258 0.210 241.5 6.1

instance-level, w/ n2n 22M 0.081 0.828 235.7 5.8
relational-level 22M 0.282 0.230 234.1 6.1

relational-level, w/ n2n 22M 0.082 0.820 232.0 5.8

5 Conclusion and Future Work

5.1 Summary of Findings

This paper introduced CRACK, Contrastive Relational-Aware Compression of Knowledge, a novel
knowledge distillation framework specifically designed for Machine Learning Force Fields (MLFFs).
CRACK represents a fundamental shift in how we approach knowledge distillation for MLFFs by
directly targeting the learned physics of interatomic potentials rather than treating atoms as indepen-
dent entities. This is achieved by defining relational vectors from the embeddings of bonded atoms
and using contrastive learning to train students to generate relational vectors uniquely identifiable
with teacher counterparts, effectively teaching the geometry of the teacher’s learned potential energy
surface.

Extensive experiments on the challenging OC20 dataset demonstrated that CRACK enables a compact
22M-parameter student model to significantly outperform strong distillation baselines, achieving
superior energy and force prediction accuracy compared to conventional node-to-node feature match-
ing approaches. The ablation studies confirmed the critical contribution of the proposed relational
contrastive distillation loss, validating our central hypothesis that distilling interactions is more
effective than distilling isolated atomic features.

Table 4: Performance of CRACK with different temperature τ . The best results are highlighted in
bold. Second best results are underlined.

τ Params Embedding Energy Force

MAE Cosine Similarity MAE (meV) ↓ MAE (meV/Å) ↓
0.05 22M 0.085 0.806 234.0 5.8
0.07 22M 0.084 0.810 232.9 5.8
0.1 22M 0.083 0.814 232.0 5.8
0.15 22M 0.082 0.820 232.0 5.8
0.2 22M 0.082 0.823 232.9 5.8
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5.2 Limitations

While CRACK shows promising results, certain limitations exist. The contrastive distillation process,
which compares relational vectors within each batch, can be computationally intensive for very large
molecular systems. The current work exclusively defined relational vectors as the difference between
bonded atom embeddings; more sophisticated relational definitions incorporating angular information
or higher-order structural features might yield further improvements but could also increase complex-
ity. Finally, the optimal balance between task loss, conventional knowledge distillation, and CRACK
loss can be dataset-dependent, requiring careful hyperparameter tuning.

5.3 Future Directions

One promising direction is exploring more sophisticated relational descriptors, moving beyond simple
vector differences to incorporate angular relationships, three-body interactions, or attention-based
scores that capture more nuanced aspects of the potential energy surface. Improving the scalability of
CRACK to massive molecular systems is also critical, which could be achieved by developing more
efficient negative sampling strategies for the contrastive loss rather than using all in-batch relations.
Furthermore, combining CRACK’s first-order distillation with second-order Hessian-based methods
could capture a more complete spectrum of physical knowledge, potentially leading to even more
faithful transfer of the teacher’s understanding. Finally, the core principles of CRACK could be
generalized beyond MLFFs to other domains where relational knowledge is important, such as social
network analysis, recommendation systems, or other molecular property prediction tasks, suggesting
broader applicability of the relational-contrastive distillation concept.

In conclusion, CRACK offers a significant step towards more effective knowledge distillation for
MLFFs by enabling the transfer of fundamental physical understanding through interatomic relation-
ships, paving the way for more efficient yet accurate molecular simulations.
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A Experimental Details

This section provides supplementary details regarding the experimental setup, including dataset
statistics, implementation specifics, and model architectures.

A.1 Dataset Statistics

The Open Catalyst 2020 (OC20) dataset is a large-scale quantum mechanics dataset for catalysis. We
use two of its sub-splits for our experiments: the O* subset and the 200K subset. The O* subset is a
specialized, out-of-distribution set designed to test model generalization on unseen adsorbates. The
200K subset is a larger, more diverse training set. Key statistics for these subsets are provided in
Table 5.

Table 5: Statistics for the OC20 Subsets Used in This Work.
Statistic O* Subset 200K Subset
Total Number of Structures 459,715 198,823
Number of Adsorbates 1 82
Number of Catalyst Surfaces 55 55
Adsorbate Formula O* Various
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A.2 Implementation Details

All models were trained using the AdamW optimizer. The learning rate was warmed up to a peak
value of 5× 10−4 over 30,000 steps and then decayed using a cosine schedule. The batch size was
set to 4. The loss balancing hyperparameters were empirically set to λ1 = 10.0 for the CRACK loss
and λ2 = 1.0 for the n2n feature matching loss. Based on our ablation studies, the temperature for
the contrastive loss was set to τ = 0.15. All experiments were conducted on NVIDIA A6000 or
A5000 GPUs, separately.

Table 6: Key Hyperparameters for Training.
Hyperparameter Value
Optimizer AdamW
Learning Rate Schedule Cosine Decay w/ Warmup
Peak Learning Rate 5× 10−4

Warmup Steps 30,000
Batch Size 4
LCRACK weight (λ1) 10.0
LKD weight (λ2) 1.0
Temperature (τ ) 0.15

B Training Algorithm

This section provides the detailed pseudocode for the end-to-end training procedure of CRACK, as
described in the main paper.
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Algorithm 1 Contrastive Relational-Aware Compression of Knowledge (CRACK) Training

1: Input: Training data loader D, pre-trained teacher model fT , student model fS , projection head
P .

2: Input: Hyperparameters: learning rate η, loss weights λ1, λ2, temperature τ .
3: Initialize parameters θS of fS and θP of P .
4: Freeze parameters of the teacher model fT .
5: for each training epoch do
6: for each batch of molecular graphs {G} in D do
7: // Generate embeddings from teacher and student models
8: With no gradient tracking for fT :
9: ZT ← fT ({G}) {Teacher atom embeddings, size Nbatch ×DT }

10: Z′
S ← fS({G}) {Student atom embeddings, size Nbatch ×DS}

11: ZS ← P (Z′
S) {Projected student embeddings, size Nbatch ×DT }

12: // Compute standard task loss (Energy and Forces)
13: US ,FS ← Predictions from fS
14: Ltask ← Loss((US ,FS), (Utrue,Ftrue))
15: // Compute optional node-to-node KD loss
16: LKD ← 1

Nbatch

∑Nbatch

i=1 ||zS,i − zT,i||22
17: // Construct Relational Vectors for all E edges in the batch
18: For each edge ek = (src, dst):
19: Normalize atom embeddings: ẑ = z/||z||2
20: Compute normalized difference vectors: rk = (ẑsrc − ẑdst)/||ẑsrc − ẑdst||2
21: This yields teacher set {rT,k} and student set {rS,k}.
22: // Compute CRACK contrastive loss
23: LCRACK ← − 1

Ebatch

∑Ebatch

k=1 log
exp(rT,k·rS,k/τ)∑Ebatch

m=1 exp(rT,k·rS,m/τ)

24: // Compute total loss and update student model
25: Ltotal ← Ltask + λ1LCRACK + λ2LKD
26: Update parameters (θS , θP ) using gradient descent on Ltotal.
27: end for
28: end for
29: Output: Trained student model fS . The projection head P is discarded after training.
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